The Water We Drink

PINEHILL WATERWORKS DISTRICT

Public Water Supply ID: LA1017027

We are pleased to present to you the Annual Water Quality Report for the year 2024. This report is designed to inform you about the quality of your water and services we deliver to you every day (Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien). Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Our water system purchases water as listed below:

Buyer Name	Seller Name	
LA1017027 - PINEHILL WATERWORKS DISTRICT	BLANCHARD WATER SYSTEM	
LA1017027 - PINEHILL WATERWORKS DISTRICT	SHREVEPORT WATER SYSTEM	

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

<u>Microbial Contaminants</u> - such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

<u>Inorganic Contaminants</u> - such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides - which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants – including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants – which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. We want our valued customers to be informed about their water utility. If you have any questions about this report, want to attend any scheduled meetings, or simply want to learn more about your drinking water, please contact ANTHONY STARKS at 318-425-7586.

Unregulated contaminants are those that do no monitoring for these contaminants is to help US	ot yet have a drinking wa SEPA decide whether the	iter standard set by USEPA. Th contaminants should have a s	ne purpose of tandard.	
Unregulated Contaminants	Collection Date	Average Concentration	Range	Unit
PERFLUOROBUTANOIC ACID (PFBA)	2024	0.7	0-5.5	ppt

Lithium	2024	15.5		
	2024	15.5	0-25.9	ppb

There is no safe level of lead in drinking water. Exposure to lead in drinking water can cause serious health effects in all age groups, especially pregnant people, infants (both formula-fed and breastfed), and young children. Some of the health effects to infants and children include decreases in IQ and attention span. Lead exposure can also result in new or worsened learning and behavior problems. The children of persons who are exposed to lead before or during pregnancy may be at increased risk of these harmful health effects. Adults have increased risks of heart disease, high blood pressure, kidney or nervous system problems. Contact your health care provider for more information about your risks.

The Louisiana Department of Health and Hospitals - Office of Public Health routinely monitors for constituents in your drinking water according to Federal and State laws. The tables that follow show the results of our monitoring during the period of January 1st to December 31st, 2024. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The pre8ence of contaminants does not necessarily indicate that water poses a health risk.

In the tables below, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms, we've provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/L) — one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/L) – one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

<u>Picocuries per liter (pCi/L)</u> – picocuries per liter is a measure of the radioactivity in water.

<u>Treatment Technique (TT)</u> – an enforceable procedure or level of technological performance which public water systems must follow to ensure control of a contaminant.

Action level (AL) – the concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

Maximum contaminant level (MCL) – the "Maximum Allowed" MCL is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

Maximum contaminant level goal (MCLG) – the "Goal" is the level of a contaminant in drinking water below which there is no known or

expected risk to human health. MCLG's allow for a margin of safety.

<u>Maximum residual disinfectant level (MRDL)</u> – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum residual disinfectant level goal (MRDLG)</u> – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

<u>Level 1 assessment</u> – A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

<u>Level 2 Assessment</u> – A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Compliance Period	Analyte	Type
12/31/2023 - 1/30/2024	TURBIDITY	MONTHLY COMB FLTR EFFLUENT (IESWTR/LT1)
4/30/2024 - 5/30/2024	TURBIDITY	MONTHLY COMB FLTR EFFLUENT (IESWTR/LT1)
5/31/2024 - 6/29/2024	TURBIDITY	MONTHLY COMB FLTR EFFLUENT (IESWTR/LT1)
5/31/2024 - 6/29/2024	TURBIDITY	SINGLE COMB FLTR EFFLUENT (IESWTR/LT1)
6/30/2024	CONSUMER CONFIDENCE RULE	CCR REPORT
10/16/2024	LEAD AND COPPER RULE REVISIONS	LSL INVENTORY-INITIAL
10/16/2024	LEAD AND COPPER RULE REVISIONS	LSL REPORTING-INITIAL
10/16/2024 - 10/24/2024	LEAD AND COPPER RULE REVISIONS	LSL REPORTING-INITIAL
10/16/2024 - 12/17/2024	LEAD AND COPPER RULE REVISIONS	LSL INVENTORY-INITIAL
11/11/2024	REVISED TOTAL COLIFORM RULE (RTCR)	CORRECTIVE/EXPEDITED ACTIONS (RTCR)

Our water system tested a minimum of 5 sample(s) per month in accordance with the Total Coliform Rule for microbiological contaminants. With the microbiological samples collected, the water system collects disinfectant residuals to ensure control of microbial growth.

Disinfectant	Date	HighestRAA	Unit	Range	MRDL	MRDLG	Typical Source
CHLORAMINE	2024	1.5	ppm	0.04 - 3.24	4	4	Water additive used to control microbes

In the tables below, we have shown the regulated contaminants that were detected. Chemical Sampling of our drinking water may not be required on an annual basis; therefore, information provided in this table refers back to the latest year of chemical sampling results.

Regulated Contaminants	Collection Date	Water System	Highest Value	Range	Unit	MCL	MCLG	Typical Source
ARSENIC	8/18/2024	SHREVEPOR T WATER SYSTEM	1.3	0 - 1.3	ppb	10	0	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes

FLUORIDE	2/19/2024	SHREVEPOR T WATER SYSTEM	0.9	0.9	ppm	4	4	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
HEXACHLOROC YCLOPENTADIE NE	8/12/2024	SHREVEPOR T WATER SYSTEM	0.079	0 - 0.079	ppb	50	50	Discharge from chemical factories

Radionuclides	Collection Date	Highest Value	Range	Unit	MCL	MCLG	Typical Source
COMBINED RADIUM (-226 & -228)	2/26/2024	0.84	0.84	pCi/I	5	0	Erosion of natural deposits
COMBINED RADIUM (-226 & -228)	2/19/2024	0.368	0.368	pCi/I	5	0	Erosion of natural deposits
GROSS BETA PARTICLE ACTIVITY	2/26/2024	2.51	2.51	pCi/I	50	0	Decay of natural and man-made deposits.
RADIUM-226	2/19/2024	0.368	0.368	PCI/L	5	0	
RADIUM-228	2/26/2024	0.84	0.84	PCI/L	5	0	Erosion of natural deposits Erosion of natural deposits

Lead and Copper	Date	90TH Percentile	Range	Unit	AL	Sites Over AL	Typical Source
COPPER, FREE	2020 - 2023	0.5	0 - 1.2	ppm	1.3	0	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
LEAD	2020 - 2023	6	0-16	ppb	15	1	Corrosion of household plumbing systems; Erosion of natural deposits

Disinfection Byproducts	Sample Point	Period	Highest LRAA	Range	Unit	MCL	MCLG	Typical Source
TOTAL HALOACETIC ACIDS (HAA5)	SHEPARD ROAD	2023 - 2024	27	2.2 - 27.2	ppb	60	0	By-product of drinking water disinfection
TOTAL HALOACETIC ACIDS (HAA5)	WOMACK RD	2023 - 2024	28	15 - 35.8	ppb	60	0	By-product of drinking water disinfection
ТТНМ	SHEPARD ROAD	2023 - 2024	17	11.2 - 18.9	ppb	80	0	By-product of drinking water chlorination
ТТНМ	WOMACK RD	2023 - 2024	17	12.1 - 18.3	ppb	80	0	By-product of drinking water chlorination

Unresolved significant deficiencies that were identified during a survey done on the water system are shown below.									
Date Identified	Facility	Code	Activity	Due Date	Description				
6/12/2023	CROWSON #2 WELL	20MG 58	IESWTR ADDRESS DEFICIENCIES	10/3/2023	LAC 51:XII.319.D.2 and LAC 51:XII.135.A - Dedicated standby power shall be provided by any community water supply and any noncommunity water supply serving a hospital so that water can be treated and/or				

C/42/2000					pumped to the distribution system during power outages to meet the average daily demand during the month of maximum water use. A standby power supply shall be provided through a dedicated portable or in-place auxiliary power of adequate supply and connectivity.;
6/12/2023	WELL	20MG 58	IESWTR ADDRESS DEFICIENCIES	10/3/2023	LAC 51:XII.319.D.2 and LAC 51:XII.135.A - Dedicated standby power shall be provided by any community water supply and any noncommunity water supply serving a hospital so that water can be treated and/or pumped to the distribution system during power outages to meet the average daily demand during the month of maximum water use. A standby power supply shall be provided through a dedicated portable or in-place auxiliary power of adequate supply and connectivity.;
6/12/2023	CROWSON #6 WELL	20MG 58	IESWTR ADDRESS DEFICIENCIES	10/3/2023	LAC 51:XII.319.D.2 and LAC 51:XII.135.A - Dedicated standby power shall be provided by any community water supply and any noncommunity water supply serving a hospital so that water can be treated and/or pumped to the distribution system during power outages to meet the average daily demand during the month of maximum water use. A standby power supply shall be provided through a dedicated portable or in-place auxiliary power of adequate supply and connectivity.;
6/12/2023	HEROLD #2 WELL	20MG 58	IESWTR ADDRESS DEFICIENCIES	10/3/2023	LAC 51:XII.319.D.2 and LAC 51:XII.135.A - Dedicated standby power shall be provided by any community water supply and any noncommunity water supply and any noncommunity water supply serving a hospital so that water can be treated and/or pumped to the distribution system during power outages to meet the average daily

1	Ī	1		
HEPOLD #2 WELL	20140			demand during the month of maximum water use. A standby power supply shall be provided through a dedicated portable or in-place auxiliary power of adequate supply and connectivity.;
TENOLD #3 WELL	58	DEFICIENCIES	10/3/2023	LAC 51:XII.319.D.2 and LAC 51:XII.135.A - Dedicated standby power shall be provided by any community water supply and any noncommunity water supply serving a hospital so that water can be treated and/or pumped to the distribution system during power outages to meet the average daily demand during the month of maximum water use. A standby power supply shall be provided through a dedicated portable or in-place auxiliary power of adequate supply and connectivity.;
WATER SYSTEM	T111	RTCR - ADDRESS SANITARY DEFECT	11/10/2024	TRTMT - LAC 51:XII.357.A - Minimum Disinfection Residuals in Distribution System; 40 CFR 141.403 and LAC 51:XII.357.A - Disinfection equipment shall be operated to maintain disinfectant residuals in each finished water storage tank and at all points throughout the distribution system at all times in accordance with the following minimum levels. 1. a free chlorine residual of 0.5 mg/l, or, 2. a chloramine residual (measured as total chlorine) of 0.5 mg/l for those systems that feed ammonia.;232
	HEROLD #3 WELL WATER SYSTEM	58	T111 RTCR - ADDRESS SANITARY	DEFICIENCIES Total Address Sanitary 11/10/2024

Source Secondary Contaminants	Water System	Collection Date	Highest Value	Range	Unit	SMCL
ALUMINUM	BLANCHARD WATER SYSTEM	7/14/2024	0.24	0.08 - 0.24	MG/L	0.2
ALUMINUM	SHREVEPORT WATER SYSTEM	2/19/2024	0.5	0.07 - 0.5	MG/L	0.2
CHLORIDE	BLANCHARD WATER SYSTEM	2/26/2024	22	22	MG/L	250
CHLORIDE	SHREVEPORT WATER SYSTEM	2/19/2024	22	22	MG/L	250

HARDNESS, TOTAL (AS CACO3)	BLANCHARD WATER SYSTEM	7/14/2024	17.3	13.3 - 17.3	MG/L	0
HARDNESS, TOTAL (AS CACO3)	SHREVEPORT WATER SYSTEM	8/18/2024	25.2	17.5 - 25.2	MG/L	0
MANGANESE	BLANCHARD WATER SYSTEM	8/12/2024	0.03	0 - 0.03	MG/L	0.05
MANGANESE	SHREVEPORT WATER SYSTEM	8/11/2024	0.25	0.03 - 0.25	MG/L	0.05
РН	BLANCHARD WATER SYSTEM	2/26/2024	6.08	6.08	PH	8.5
PH .	SHREVEPORT WATER SYSTEM	2/19/2024	6.92	6.92	PH	8.5
POTASSIUM	BLANCHARD WATER SYSTEM	7/14/2024	3.9	3.3 - 3.9	MG/L	0
POTASSIUM	SHREVEPORT WATER SYSTEM	8/18/2024	2.6	2.1 - 2.6	MG/L	0
SODIUM	BLANCHARD WATER SYSTEM	7/14/2024	18.3	17.9 - 18.3	MG/L	0
SODIUM	SHREVEPORT WATER SYSTEM	8/25/2024	33.9	22.1 - 33.9	MG/L	0
SULFATE	BLANCHARD WATER SYSTEM	2/26/2024	16	16	MG/L	250
SULFATE	SHREVEPORT WATER SYSTEM	2/19/2024	36	36	MG/L	250

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. PINEHILL WATERWORKS DISTRICT is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact PINEHILL WATERWORKS DISTRICT and ANTHONY STARKS BUS Phone: 318-425-7586. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

Additional Required Health Effects Language:

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.

Infants and children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4761).

Additional Required Health Effects Violation notices:

2C-2 - We failed to correct all sanitary defects that were identified during the assessment that we conducted.

We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year 1 Level 2 assessments were required to be completed for our water system. 1 Level 2 assessments were completed. In addition, we were required to take 1 corrective actions and we completed 0 of these actions.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers.

We at the PINEHILL WATERWORKS DISTRICT work around the clock to provide top quality drinking water to every tap. We ask that all our customers help us protect and conserve our water sources, which are the heart of our community, our way of life, and our children's future. Additional information on the water system can be found at www.ldh.la.gov/watergrade. Please call our office if you have questions.